PLDB
Languages Features Calendar CSV Lists Blog About Sponsor Add Language
GitHub icon

NumPy

NumPy

NumPy is a library created in 1995 by Travis Oliphant.

#282on PLDB 27Years Old 2.2kUsers

NumPy (pronounced (NUM-py) or sometimes (NUM-pee)) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. The ancestor of NumPy, Numeric, was originally created by Jim Hugunin with contributions from several other developers. In 2005, Travis Oliphant created NumPy by incorporating features of the competing Numarray into Numeric, with extensive modifications. Read more on Wikipedia...


Example from Wikipedia:
>>> # # # Pure iterative Python # # # >>> points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]] >>> qPoint = [4,5,3] >>> minIdx = -1 >>> minDist = -1 >>> for idx, point in enumerate(points): # iterate over all points dist = sum([(dp-dq)**2 for dp,dq in zip(point,qPoint)])**0.5 # compute the euclidean distance for each point to q if dist < minDist or minDist < 0: # if necessary, update minimum distance and index of the corresponding point minDist = dist minIdx = idx >>> print 'Nearest point to q: ', points[minIdx] Nearest point to q: [3, 4, 4] >>> # # # Equivalent NumPy vectorization # # # >>> import numpy as np >>> points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]) >>> qPoint = np.array([4,5,3]) >>> minIdx = np.argmin(np.linalg.norm(points-qPoint,axis=1)) # compute all euclidean distances at once and return the index of the smallest one >>> print 'Nearest point to q: ', points[minIdx] Nearest point to q: [3 4 4]

Language features

Feature Supported Example Token
Line Comments
Binary Literals
Integers
Floats
Hexadecimals
Octals

Books about NumPy on goodreads

title author year reviews ratings rating
SciPy and NumPy: An Overview for Developers Eli Bressert 2012 10 47 2.96
edn.html · numpy.html · self.html

View source

PLDB - Build the next great programming language · v2022 · Day 33 · Docs · Build · Acknowledgements · Traffic Today · Traffic Trends · Mirrors · GitHub · feedback@pldb.com